
ef1p.com 1Digital signatures

Digital signatures
Using multiplicative groups

28 September 2022

https://ef1p.com

2Digital signaturesef1p.com

Algebraic group
Consists of a set 𝔾 and a binary operation · with:

● Closure: ∀ A, B ∈ 𝔾: A · B ∈ 𝔾
● Associativity (allows omitting parentheses):
∀ A, B, C ∈ 𝔾: (A · B) · C = A · (B · C)

● Identity: ∃ I ∈ 𝔾 ∀ A ∈ 𝔾: I · A = A · I = A

● Invertibility: ∀ A ∈ 𝔾 ∃ B ∈ 𝔾: A · B = I

Not required but fulfilled by multiplicative groups:

● Commutativity: ∀ A, B ∈ 𝔾: A · B = B · A

https://ef1p.com

3Digital signaturesef1p.com

Order of the group and of elements
● Group order: number of elements in the set 𝔾.

● Element order: how many times the element
has to be repeated to get the identity element.

● Multiplicative notation: An = I

If |A| < |𝔾|, then A generates a subgroup.
Lagrange’s theorem: ∀ A ∈ 𝔾: |A| divides |𝔾|.

As a consequence, A|𝔾| = I, which is called
Fermat’s little theorem or Euler’s theorem.

https://ef1p.com
https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(group_theory)
https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
https://en.wikipedia.org/wiki/Euler%27s_theorem

4Digital signaturesef1p.com

Group generator
G ∈ 𝔾 generates the whole group if |G| = |𝔾|
and thus 𝔾 = {Gi with i from 1 to |𝔾|}.

Repeating a generator is linear: Ga + b = Ga · Gb.

I use lowercase letters for integers and
uppercase letters for elements of the group.

https://ef1p.com

5Digital signaturesef1p.com

Repetition ring
A ring is a field in which not all elements have a
multiplicative inverse (only those which have no
factor in common with the ring modulus).

Whether two numbers are coprime can be
determined with the Euclidean algorithm.

The multiplicative inverse can be determined with
the extended Euclidean algorithm.

Since G|G| = I, the coefficients (or exponents) can
be calculated modulo |G|.

https://ef1p.com
https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Multiplicative_inverse
https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

6Digital signaturesef1p.com

Discrete logarithm problem (DLP)
Discrete logarithm problem: Given A = Ga, no
efficient algorithms are known to compute a from
A and G in multiplicative groups, which makes it a
one-way function.

Note that the “discrete root problem” (solving for
the base rather than the exponent) is not always
difficult.

https://ef1p.com
https://en.wikipedia.org/wiki/Discrete_logarithm

7Digital signaturesef1p.com

Digital signature scheme
Digital signature schemes consist of 3 algorithms:

● KeyGeneration(entropy) → private k, public K
(called key because you can unlock things like
coins; k → K typically easy, K → k always hard)

● Signing(message, k) → signature (can only be
produced by the person who knows the key k)

● Verification(message, K, signature) → true/false
(anyone who knows the public key K can verify)

https://ef1p.com

8Digital signaturesef1p.com

Computations with secret values
The idea behind many signature schemes is to use
a linear one-way function to hide the private key
while still allowing the verifier to compute with it.

Example: You can compute f(a · b) if you know f(b)
without having to know b (see Diffie-Hellman).

For all the signature schemes discussed today,
k is the private key and K = Gk the public key.

A signature value s has to depend on the private
key k and h = hash(message).

https://ef1p.com

9Digital signaturesef1p.com

An unsuccessful first attempt
● Equation (to be masked): h =|G| k · s

● Signing: s =|G| k
−1 · h

● Verification: Gh ≟ Ks

Problem: The verifier can compute k =|G| h · s−1.

(One equation with one unknown can be solved.)

Solution: Add a second unknown to the equation.

https://ef1p.com

10Digital signaturesef1p.com

Ephemeral key for hiding static key
● Ephemeral key: private r, public R = Gr

(public means R is included in the signature)

● Equation: h =|G| k · s + r

● Signing: s =|G| k
−1 · (h − r) ·

● Verification: Gh ≟ Ks · R

Problem: Anyone can forge a valid signature by
choosing a random s and computing R = Gh / Ks.

Moving s to R (Gh ≟ K · Rs) doesn’t work because
the “discrete root problem” is not always difficult.

https://ef1p.com

11Digital signaturesef1p.com

Solution: Make s depend on R
There are two ways to do this:

● Use R as an integer in the equation which is
solved for s (see the Elgamal signature scheme).

● Include R in the hash: h = hash(message, R)
(see the Schnorr signature scheme later on).

https://ef1p.com

12Digital signaturesef1p.com

Elgamal signature scheme

● Equation: h =|G| k · R + r · s

● Signing: s =|G| r
−1 · (h − k · R)

● Verification: Gh ≟ KR · Rs

Important: The ephemeral key R = Gr has to be
different for every signature! Otherwise, the two
equations can be solved for the two unknowns.

Described by Elgamal (the father of SSL) in 1985.

https://ef1p.com

13Digital signaturesef1p.com

Zero-knowledge proofs
Goal: Convince another party of one’s knowledge
w/o revealing any information or leaving evidence.

Parties: Prover convinces verifier of knowing k.
Trivial by revealing k but not zero-knowledge then.

● Completeness (successful proof): An honest
verifier will be convinced by an honest prover.

● Soundness (proof of knowledge): Prover can
fake knowledge only with negligible probability.

● Zero-knowledge: Verifier can fake transcript.

https://ef1p.com

14Digital signaturesef1p.com

Knowledge of discrete logarithm
Prover

knows k so that K = Gk

choose random r < |G|
compute R = Gr

compute s =|G| r − k · c

Verifier

choose random c < |G|

verify that R = Gs · Kc

R

c

s

https://ef1p.com

15Digital signaturesef1p.com

Evaluation of criteria
● Completeness: Gr = Gr − k · c · (Gk)c.

● Soundness: By sending distinct challenges c
and c' after the same R, the verifier can extract
the secret k by computing (s − s')/(c' − c)
because Gs · Kc = R = Gs' · Kc' and thus
Gs / Gs' = Gs − s' = Kc' / Kc = Kc' − c.

● Zero-Knowledge: By choosing the random
values c and s first, the verifier can compute
R = Gs · Kc, which results in a valid transcript.

https://ef1p.com

16Digital signaturesef1p.com

Choice of the challenge
Since the verifier might choose the challenge c
non-randomly, this protocol is only so-called
honest-verifier zero-knowledge. A dishonest
verifier can turn this into a signature scheme.
(The verifier could commit to c beforehand.)

To be a proof of knowledge, the prover has to
learn the challenge c after fixing the ephemeral
key R. This dependency can be established either
by a verifier or by a cryptographic hash function.

https://ef1p.com

17Digital signaturesef1p.com

Schnorr signature scheme
● Signer:

○ Knows k so that K = Gk.

○ Choose random r < |G|.

○ Compute R = Gr, c = hash(R, m, K),
and s =|G| r − k · c for message m.

○ Share (c, s) or (R, s) as a signature.

● Verifier:

○ In the case of (c, s): c ≟ hash(Gs · Kc, m, K).

○ In the case of (R, s): R ≟ Gs · Khash(R, m, K).

https://ef1p.com

