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Algebraic group
Consists of a set 𝔾 and a binary operation · with:

● Closure: ∀ A, B ∈ 𝔾: A · B ∈ 𝔾
● Associativity (allows omitting parentheses):
∀ A, B, C ∈ 𝔾: (A · B) · C = A · (B · C)

● Identity: ∃ I ∈ 𝔾 ∀ A ∈ 𝔾: I · A = A · I = A

● Invertibility: ∀ A ∈ 𝔾 ∃ B ∈ 𝔾: A · B = I

Not required but fulfilled by multiplicative groups:

● Commutativity: ∀ A, B ∈ 𝔾: A · B = B · A

https://ef1p.com
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Order of the group and of elements
● Group order: number of elements in the set 𝔾.

● Element order: how many times the element 
has to be repeated to get the identity element.

● Multiplicative notation: An = I

If |A| < |𝔾|, then A generates a subgroup.
Lagrange’s theorem: ∀ A ∈ 𝔾: |A| divides |𝔾|.

As a consequence, A|𝔾| = I, which is called 
Fermat’s little theorem or Euler’s theorem.

https://ef1p.com
https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(group_theory)
https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
https://en.wikipedia.org/wiki/Euler%27s_theorem
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Group generator
G ∈ 𝔾 generates the whole group if |G| = |𝔾|
and thus 𝔾 = {Gi with i from 1 to |𝔾|}.

Repeating a generator is linear: Ga + b = Ga · Gb.

I use lowercase letters for integers and
uppercase letters for elements of the group.

https://ef1p.com
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Repetition ring
A ring is a field in which not all elements have a 
multiplicative inverse (only those which have no 
factor in common with the ring modulus).

Whether two numbers are coprime can be 
determined with the Euclidean algorithm.

The multiplicative inverse can be determined with 
the extended Euclidean algorithm.

Since G|G| = I, the coefficients (or exponents) can 
be calculated modulo |G|.

https://ef1p.com
https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Multiplicative_inverse
https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
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Discrete logarithm problem (DLP)
Discrete logarithm problem: Given A = Ga, no 
efficient algorithms are known to compute a from 
A and G in multiplicative groups, which makes it a 
one-way function.

Note that the “discrete root problem” (solving for
the base rather than the exponent) is not always 
difficult.

https://ef1p.com
https://en.wikipedia.org/wiki/Discrete_logarithm
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Digital signature scheme
Digital signature schemes consist of 3 algorithms:

● KeyGeneration(entropy) → private k, public K 
(called key because you can unlock things like 
coins; k → K typically easy, K → k always hard)

● Signing(message, k) → signature (can only be 
produced by the person who knows the key k)

● Verification(message, K, signature) → true/false 
(anyone who knows the public key K can verify)

https://ef1p.com
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Computations with secret values
The idea behind many signature schemes is to use 
a linear one-way function to hide the private key 
while still allowing the verifier to compute with it.

Example: You can compute f(a · b) if you know f(b) 
without having to know b (see Diffie-Hellman).

For all the signature schemes discussed today,
k is the private key and K = Gk the public key.

A signature value s has to depend on the private 
key k and h = hash(message).

https://ef1p.com
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An unsuccessful first attempt
● Equation (to be masked): h =|G| k · s

● Signing: s =|G| k
−1 · h

● Verification: Gh ≟ Ks

Problem: The verifier can compute k =|G| h · s−1.

(One equation with one unknown can be solved.)

Solution: Add a second unknown to the equation.

https://ef1p.com
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Ephemeral key for hiding static key
● Ephemeral key: private r, public R = Gr

(public means R is included in the signature)

● Equation: h =|G| k · s + r

● Signing: s =|G| k
−1 · (h − r) · 

● Verification: Gh ≟ Ks · R

Problem: Anyone can forge a valid signature by 
choosing a random s and computing R = Gh / Ks.

Moving s to R (Gh ≟ K · Rs) doesn’t work because 
the “discrete root problem” is not always difficult.

https://ef1p.com
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Solution: Make s depend on R
There are two ways to do this:

● Use R as an integer in the equation which is 
solved for s (see the Elgamal signature scheme).

● Include R in the hash: h = hash(message, R)
(see the Schnorr signature scheme later on).

https://ef1p.com
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Elgamal signature scheme

● Equation: h =|G| k · R + r · s

● Signing: s =|G| r
−1 · (h − k · R)

● Verification: Gh ≟ KR · Rs

Important: The ephemeral key R = Gr has to be 
different for every signature! Otherwise, the two 
equations can be solved for the two unknowns.

Described by Elgamal (the father of SSL) in 1985.

https://ef1p.com
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Zero-knowledge proofs
Goal: Convince another party of one’s knowledge 
w/o revealing any information or leaving evidence.

Parties: Prover convinces verifier of knowing k. 
Trivial by revealing k but not zero-knowledge then.

● Completeness (successful proof): An honest 
verifier will be convinced by an honest prover.

● Soundness (proof of knowledge): Prover can 
fake knowledge only with negligible probability.

● Zero-knowledge: Verifier can fake transcript.

https://ef1p.com
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Knowledge of discrete logarithm
Prover

knows k so that K = Gk

choose random r < |G|
compute R = Gr

compute s =|G| r − k · c

Verifier

choose random c < |G|

verify that R = Gs · Kc

R

c

s

https://ef1p.com
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Evaluation of criteria
● Completeness: Gr = Gr − k · c · (Gk)c.

● Soundness: By sending distinct challenges c 
and c' after the same R, the verifier can extract 
the secret k by computing (s − s')/(c' − c) 
because Gs · Kc = R = Gs' · Kc' and thus
Gs / Gs' = Gs − s' = Kc' / Kc = Kc' − c.

● Zero-Knowledge: By choosing the random 
values c and s first, the verifier can compute
R = Gs · Kc, which results in a valid transcript.

https://ef1p.com
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Choice of the challenge
Since the verifier might choose the challenge c 
non-randomly, this protocol is only so-called 
honest-verifier zero-knowledge. A dishonest 
verifier can turn this into a signature scheme.
(The verifier could commit to c beforehand.)

To be a proof of knowledge, the prover has to 
learn the challenge c after fixing the ephemeral 
key R. This dependency can be established either 
by a verifier or by a cryptographic hash function.

https://ef1p.com


17Digital signaturesef1p.com

Schnorr signature scheme
● Signer:

○ Knows k so that K = Gk.

○ Choose random r < |G|.

○ Compute R = Gr, c = hash(R, m, K),
and s =|G| r − k · c for message m.

○ Share (c, s) or (R, s) as a signature.

● Verifier:

○ In the case of (c, s): c ≟ hash(Gs · Kc, m, K).

○ In the case of (R, s): R ≟ Gs · Khash(R, m, K).

https://ef1p.com

