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General reference and source for 

further reading: www.wikipedia.org



3.1. Introduction
• Cryptography: κρυπτός (secret) and γράφειν (writing)

� Secure communication in the presence of third parties

• Long history of encryption, dating back to ancient times

• For a long time, encryption was more art than science

• Today based on computational hardness assumptions about 

problems like integer factorization or discrete logarithm

• Distinction between computationally secure (hard to break) 

and information-theoretically secure (cannot be broken)

• No quantum computing and cryptography covered today
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Encryption and Decryption
Encryption converts plaintext into unintelligible ciphertext

Decryption requires special knowledge to recover plaintext

Setting: Alice wants to send a message to Bob, while a passive 

or active adversary intercepts their (secret) communication

Attacker model (what the adversary can do):

• Adversary has limited or unlimited computing power

• Passive: Eavesdrop on communication channel (called Eve)

• Active: Remove and insert messages (Mallory or Trudy)
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Authentication, Authorization
Authentication is about confirming the identity of an entity

Identity is the property that makes two objects the same

(The identity relation is transitive, symmetric and reflexive)

Authorization is about specifying the permissions of an entity

Authentication factors for human users:

• Something they are: fingerprint, retinal pattern, signature

• Something they have: wrist band, badge, security token

• Something they know: password/PIN, response to challenge
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Information Security
Three main objectives in information security (CIA):

• Confidentiality: Keeping communication and data secret

• Integrity: Checking messages and authenticating the sender

• Availability: Ensuring the access to information and services

Possible attacks:

• Brute-force: Check all possible keys (vs. increase key length)

• Man-in-the-middle: Relay messages between unaware victims

• Denial-of-service (DoS): Make a service unavailable to users
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Kerckhoffs’s Principle
A cryptosystem should be secure even if everything about 

the system, except the key, is public knowledge (1883)

� Less expensive to change the keys than the cryptosystem

� A necessity for cryptosystems deployed in user machines

� Keeping it secret is still another hurdle for the enemy

Contrary principle: Security through obscurity

� Problems: Reverse engineering, no peer review, backdoors

� Steganography: Hiding even the existence of a message
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Legal Issues
• In the UK, a suspected criminal can be forced to hand over 

their encryption key if asked by law enforcement (violation 

of the right of not being forced to incriminate oneself)

• In China, a license is required to use cryptography

• Cryptography considered important for national security, 

therefore the USA regulated its export until the 1990s

• Cryptography central to digital rights management (DRM)

• Digital Millennium Copyright Act, signed by B. Clinton, 1998: 

Criminalizes the circumvention of DRM technologies
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3.2. Cryptographic Primitives
• Cryptographic primitives are fundamental techniques used 

as building blocks in the design of cryptographic protocols

• They fulfill a specific task according to an abstract concept

• In practice, they are instantiated with concrete algorithms

• Combining crypto. primitives is an art requiring deep insight

Examples:

• Cryptographic hash functions

• Random number generators
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One-way Functions

Given a one-way function f and y, hard to find x with f(x) = y

Existence of one-way functions is a conjecture (� P ≠ NP)

Hash function: arbitrary block of data → fixed-size bit string

A collision-free hash function is a one-way function for which 

no two distinct values x and y with f(x) = f(y) can be found
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Domain Range

f: easy

“f-1”: hard



Pseudorandom Functions
• Random values needed for the generation of crypto. keys

• A random number generator generates random numbers

• Difficult to get true randomness in deterministic systems:

Measure some physical phenomenon assumed as random

or use an algorithm producing apparently random results

• Pseudorandom number generators initialized with a seed

• Seed must not be leaked in cryptographic applications

• It is hard to distinguish the output of a pseudorandom 

function from the output of a normal random function
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3.3. Symmetric-key Crypto.

• Both sender and receiver share same key for encryption

• Only encryption method publicly known before June 1976

• Given any message m: Decryptionk(Encryptionk(m)) = m

• Add randomization: E’k(m) = Ek(r || m) (|| is concatenation)

� Prevents recognition of identical messages (+ no replay)
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Perfectly Secure Encryption
• The so-called one-time pad encryption is perfectly secure

• Not practical in most contexts since key as long as message

• Exclusive or operator ⊕: “One or the other but not both”

� Flips the bit if input is 1 and leaves the bit if input is 0

• Cipher given by Ek(m) = m ⊕ k = c and Dk(c) = c ⊕ k

• Since k is chosen at random, ciphertext c is also random

� Ciphertext c contains no information about message m

• Only perfectly secure if key used only once (one-time pad)

• However, easily malleable if no additional measures taken
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Block and Stream Ciphers
• A cipher is a pair of encryption and decryption algorithms

• Block ciphers take as input a block of plaintext and a key, 

and output a block of ciphertext of the same size

• Various possibilities for how to combine successive blocks

• Examples: Data Encryption Standard (DES) and Advanced 

Encryption Standard (AES) designated by US government

• Increase key size by encrypting several times, e.g. Triple DES

• Stream ciphers create an arbitrarily long stream of key 

material that is combined with plaintext like one-time pad
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Message Authentication Code
• Provide not only confidentiality of data but also integrity

• Message authenication codes (MACs) authenticate messages

• MAC algorithms take secret key + message and append a tag

• They work like hash functions with key: E.g. t = hash(k || m)

• Receiver does the same computation and compares the tags

• Alternatively, just encrypt hash of message with the message

• Contrary to digital signatures, no accountability with MACs

(because the receiver can compute the same tag themself)
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3.4. Public-key Cryptography
• Main problem with symmetric-key cryptography is the key 

management: Each pair of parties must share a different key

or rely on a trusted third party to distribute one on demand

• Public-key (or asymmetric-key) crypto. proposed in 1976:

Based on a pair of related keys (private key and public key), 

where it is infeasible to compute the former from the latter

• The public key, used for encryption, can be freely distributed, 

the private key, used for decryption, must remain secret

• Public-key crypto. assumes existence of trapdoor one-way 

functions: Hard to invert unless secret information is known
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Digital Signatures
• Two algorithms for digital signatures: Signing and verification

• Signatures are easy to produce but hard for others to forge

• Digital signature: Tied to the content of the signed message

• Handwritten signature: Same for every file and easy to forge

• Use the private key for signing, the public key for verifying

• Public-key algorithms are computationally more expensive: 

Only sign hash of message and only encrypt symmetric key

• The autograph signature and the qualified digital signature 

are treated as equal in CH (Art. 14 Abs. 2bis OR) (SuisseID)
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Public Key Infrastructure (PKI)
• Not possible to authenticate someone you have never met

– unless you trust a third party to confirm their identity

• Introduce certificate authorities (CAs) that bind public keys 

with the identities of registered users by signing certificates

• Users authenticate themselves by presenting a certificate & 

by showing that they possess the corresponding private key

• Certificates have a scope and an expiration date, and since 

they can be revoked, trusted timestamping facility required

• Binding users to their public key ensures non-repudiation

• Advantage of public-key c.: CA can be offline after issuance
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3.5. Group Theory
• A group is a structure consisting of a set and an operation 

that combines any two of its elements to form a third one

• To qualify as a group, set and operation must satisfy a few 

conditions called group axioms (stated on the next slide)

• The goal of algebra is to understand the properties of such 

structures at the highest level of generality and abstraction

• Abstraction: Eliminate unnecessary details for simplification

Quantification to make statements about elements of a set:

• Universal quantifier ∀ (“for all”): ∀ elements ∈ set: stmt.

• Existential quantifier ∃ (“it exists”): ∃ element ∈ set: stmt.
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Group Axioms
A group is a set G and a binary operation · that satisfy:

• Closure: ∀ a, b ∈ G: a · b ∈ G

• Associativity: ∀ a, b, c ∈ G: (a · b) · c = a · (b · c)

• Identity: ∃ e ∈ G ∀ a ∈ G: e · a = a · e = a

• Invertibility: ∀ a ∈ G ∃ b ∈ G: a · b = b · a = e

Due to associativity, parentheses are usually omitted

There exists only one neutral element: e = e · e’ = e’

A group is called commutative if also ∀ a, b ∈ G: a · b = b · a
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Element and Group Order
• For convenience, we use multiplicative notation for groups:

We denote the operation as “·” and the inverse of a as a-1

• Similarly, am · an = am+n and (am)n = amn, therefore a0 = e

• The number of elements is called the order of the group

• The order of an element a is the least m ≥ 1 with am = e

• In a finite group, every element has a finite order “ord(a)”

• A subgroup is a group H contained within a bigger one G 

so that the neutral element of G is contained in H and 

whenever h1 and h2 are in H, then so are h1 · h2 and h1
−1

21

3.5. Group Theory



Lagrange’s Theorem
«For any finite group G, the order of every

subgroup H of G divides the order of G»

Proof sketch:

• Set H · a ≝ {h · a | h ∈ H} for a ∈ G is called right coset of H

• The cosets of H form a partition of G: Union of all cosets

is equal to G and two cosets are either equal or disjoint

• Two cosets H · a and H · b are equal iff ∃ h ∈ H: b = h · a

• All cosets have the same “order” � each has |H| elements

• Define bijective mapping f: H · a → H · b as f(x) = x · a-1 · b
22

3.5. Group Theory

⋮

H · b

H · a

H

G:



Modular Arithmetic
• For a positive integer n, two integers a and b are said to be 

congruent modulo n (written a ≡n b) if a - b is multiple of n

• If a ≡n b and a, b ≥ 0, then a/n and a/b have same remainder

• This relation partitions integers into congruence classes:

a1 ≡n b1 and a2 ≡n b2 � a1 + a2 ≡n b1 + b2 and a1 a2 ≡n b1 b2

Examples of groups:

• Integers modulo 12 with addition (like analog clock), e = 0

• Integers modulo 5 with multiplication but w/o multiples of 5
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Euler’s Totient Function
• Having 2 sandglasses of different durations, the measurable 

times are multiples of their greatest common divisor (GCD)

• In case of multiplicative groups modulo n, only integers that 

are coprime to n (their GCD is 1) have an inverse element

• The totient φ(n) of a positive integer n is the number of 

positive integers less than n that are coprime to n (Euler)

Cryptography is only interested in two cases:

• Prime p: φ(p) = p - 1 (positive integers smaller p except 0)

• Product of primes p and q: φ(p · q) = (p - 1)(q - 1) (count)
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Euler’s Theorem
Euler’s Theorem: aφ(n) ≡n 1 (for coprime integers n and a)

Proof (application of group theory):

• Treat a as an element of the multiplicative group modulo n

• Subgroup�a�= {e, a, a2, …, aord(a)-1} of G has order ord(a)

• By Lagrange’s theorem: ord(a) divides |G| for every a ∈ G

• Consequently, a|G| = e for every a ∈ G and finite group G

• Number of elements in multiplicative group modulo n: φ(n)
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3.6. Cryptosystems
In general, cryptosystems consist of three algorithms:

• Key generation: Generates a random pair of keys

• Encryption: Transforms the plaintext into ciphertext

• Decryption: Recovers the plaintext from the ciphertext

These algorithms have to be efficient for the legitimate 

parties (polynomial time in terms of key size) but hard

for any computationally limited adversary (exponential)

Given this asymmetry, increasing the key size compensates

for any performance improvements of modern computers
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Diffie-Hellman Key Exchange

kAB ≡p kBA used to derive a key for symmetric encryption

Discrete logarithm assumption: Given p, g and y with y ≡p gx, 

computing x is computationally infeasible (one-way function)
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kAB ≡p Ba ≡p (gb)a ≡p (ga)b ≡p Ab ≡p kBA

Alice

selects a ∈R {0, …, p - 2}
(subscript R: at random)

A ≡p ga

kAB ≡p Ba

insecure channel Bob

selects b ∈R {0, …, p - 2}
(p is a prime number)

B ≡p gb

kBA ≡p Ab

A

B

Remark: gx modulo p can be computed efficiently with exponentiation by squaring



ElGamal Encryption
Key generation:

• Bob chooses a multipl. group G of order q with generator g

• Bob chooses b ∈R {0, …, q - 1} and computes B = gb

• Bob publishes G, q, g and B as public key, retains b private

Encryption:

• Alice chooses a ∈R {0, …, q - 1} and computes A = ga

• Alice computes ciphertext as (A, M) = (ga, m · Ba)

Decryption:

• Bob computes m = M · A-b = m · Ba · (ga)-b = m · (gb)a · (gb)-a
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Extended Euclidean Algorithm
How to find the multiplicative inverse of integer a modulo n?

• The extended Euclidean algorithm finds for input a and b 

two integers x and y that satisfy ax + by = gcd(a, b)

• Remember: Multiplicative inverse only exists if gcd(a, n) = 1 

• Taking b = n gives us ax + ny = 1 � ax ≡n 1 and x ≡n a-1

3.6. Cryptosystems

Step Quotient Remainder Substitute Combine terms

1 120 = a = 120 · 1 + 23 · 0

2 23 = b = 120 · 0 + 23 · 1

3 5 5 = 120 - 23 · 5 = (120 · 1 + 23 · 0) - (120 · 0 + 23 · 1) · 5 = 120 · 1 + 23 · -5

4 4 3 = 23 - 5 · 4 = (120 · 0 + 23 · 1) - (120 · 1 + 23 · -5) · 4 = 120 · -4 + 23 · 21

5 1 2 = 5 - 3 · 1 = (120 · 1 + 23 · -5) - (120 · -4 + 23 · 21) · 1 = 120 · 5 + 23 · -26

6 1 1 = 3 - 2 · 1 = (120 · -4 + 23 · 21) - (120 · 5 + 23 · -26) · 1 = 120 · -9 + 23 · 47

7 2 0 End of algorithm → x = -9 and y = 47



RSA Algorithm
Key generation:

• Choose two random primes p and q, compute n = p · q

• Compute φ(n) = (p - 1)(q - 1), choose e w. gcd(e, φ(n)) = 1

• Determine the multiplicative inverse of e: d ≡φ(n) e-1 (Euclid)

• Publish modulus n and exponent e, retain d as private key

Encryption/Verification:

• Compute ciphertext c ≡n me (with m being group element)

Decryption/Signing:

• Compute m ≡n cd ≡n (me)d ≡n m1+k·φ(n) ≡n m(mφ(n))k ≡n m·1k
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d · e - k · φ(n) = 1 Euler’s theorem

easy

hard



Concepts Learned Today
• Abstraction

• Authentication

• Authorization

• Confidentiality

• Digital signatures

• Encryption and decryption

• Integrity

• Public-key cryptography

• Symmetric-key cryptography
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Clip of Today
Medieval helpdesk with English subtitles (2:46)

http://www.youtube.com/watch?v=pQHX-SjgQvQ

32

3. Cryptography

My favorite comment:

The  bookmarks will 

come in version 2.0.

http://www.youtube.com/watch?v=pQHX-SjgQvQ
http://www.youtube.com/watch?v=pQHX-SjgQvQ

