
IT Compact Course
Hardware and Software

Internet and Web

Cryptography

Kaspar Etter, October 2011
License: CC BY-NC-ND 3.0



1. Hardware and Software

Hardware:

• Computers (physical)

• General purpose machines

• Expensive to design

• Expensive to copy

• Subjected to wear

Software:

• Programs (intangible)

• Special purpose instructions

• Expensive to design

• Free to copy

• Wear-free

2



Input/Output (I/O)

«Computer Science is no more about computers
than astronomy is about telescopes.»

Edsger Dijkstra (misattributed)

3

1. Hardware and Software

Real World

Input

Output

Computer
(processing of information)



Computers
The good news are that …

• they do exactly what you tell them to do

• they do it very fast

The bad news are that …

• they do exactly what you tell them to do

• they do it very fast

«To err is human, but to really mess things up
you need a computer!»

4

1. Hardware and Software



Outline
1.1.Processor

1.2.Memory

1.3.Program

1.4.Operating System

1.5.Data Structures

1.6.Algorithms

5

1. Hardware and Software

} Hardware

} Software

}Programming

General reference and source for 
further reading: www.wikipedia.org



1.1. Processor
• Central Processing Unit (CPU)

• Sequential processing of arithmetic and logical operations

• Data stored as binary numbers due to easy implementation 
in digital electronic circuitry using logic gates

• Only integers considered here (no floating-point numbers)

• A digital system uses discrete values, an analog system uses 
continuous values to represent information
(Digital comes from the Latin word digitus, meaning finger)

• A bit (a contraction of binary digit) is the basic unit of 
information in computing and is usually denoted as 0 and 1

6

1. Hardware and Software



Bits and Bytes
• 8 bits (b) = 1 byte/octet (B), allows to represent 256 values

• Unsigned 8-bit integer: 0 to 255; signed integer: -128 to 127

• Byte was the # of bits to encode a single character of text: 
Basic addressable element in many computer architectures

• Processors manipulate bits in fix-sized groups named words

• Prefixes:

7

1.1. Processor

Decimal (SI)Decimal (SI) BinaryBinary

kilo (k) 103 kibi (Ki) 210 ≈ 1.02·103

mega (M) 106 mebi (Mi) 220 ≈ 1.05·106

giga (G) 109 gibi (Gi) 230 ≈ 1.07·109

tera (T) 1012 tebi (Ti) 240 ≈ 1.10·1012



Pointers, Registers and Flags
• Von Neumann architecture: Data & code in same memory

• Material based on Intel’s instruction set architecture x86-32
Heavily simplified (no segmentation, addressing modes, etc.)

• Word length of 32 bits (= 4 bytes), from 0 to 4’294’967’295

• Instruction pointer: Memory address of next instruction

• 8 registers hold the current operands (the first 4 being 
general-purpose): EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP

• Carry, overflow and zero flag: Bits set after every operation

• Much of the trouble comes from backward compatibility
8

1.1. Processor



Operations
• Conceptually, there are only three types of operations:

• Load data from memory to registers and
store data from registers back to memory

• Perform arithmetic and logical operations on registers

• Control program flow with (conditional) jumps in code

• Memory is accessed with pointers to the desired locations

• Jumps can be absolute or relative in terms of memory 
address and often depend on the last executed operation

• The x86 instruction set comprises hundreds of operations
9

1.1. Processor



Assembly
• A low-level programming language that represents binary 

machine code in a human-readable form (with mnemonics)

• Needs to be translated into machine code for execution

• Example: Add together all numbers from 1 to 100

10

1.1. Processor

      mov #0, sum    ; set sum to 0
      mov #1, num    ; set num to 1
loop: add num, sum   ; add num to sum
      add #1, num    ; add 1 to num
      cmp num, #100  ; compare num to 100
      ble loop       ; if num <= 100, go back to 'loop'
      halt           ; end of program. stop running

commentoperator operands

label

source and destination (register)branch less or equal



Pipelining
• Increase the instruction throughput by splitting the proc-

essing of an instruction into a series of independent steps
(which increases the time to execute a single instruction)

• Issue instructions at the processing rate of the slowest step

• Maintain semantics for interdependent instructions and 
branches (branch prediction and speculative execution)

11

1.1. Processor

1. Instruction fetch
2. Instruction decode and register fetch
3. Execute
4. Memory access
5. Register write back

file://localhost/Users/casper/Downloads/5_Stage_Pipeline.svg
file://localhost/Users/casper/Downloads/5_Stage_Pipeline.svg
file://localhost/Users/casper/Downloads/5_Stage_Pipeline.svg


Moore’s Law
• Trend described by Intel co-founder Gordon Moore,1965:

The number of transistors on chips doubles every 2 years.

• Originally an observation
and forecast, now a
self-fulfilling prophecy

• Wirth’s law, 1995:
Software is getting
slower more rapidly
than hardware
becomes faster.

12

1.1. Processor



1.2. Memory
• A list of cells into which numbers can be placed or read

• The cells are numbered and can be addressed accordingly

• Hardware does not know the semantics of these numbers

• Memory is the bottleneck (limiting component of a system)

13

1. Hardware and Software

Schedule of bus and tram departures



Caching
• A cache stores data for faster access in the future

• Cache hit: Requested data is contained in the cache

• Cache miss: Data has to be fetched from another location;
Replaces a cache entry selected by the replacement policy

• The writing of data can be handled in two ways:
- Write-through: Write to cache and memory concurrently
- Write-back: Store the dirty cache entry on replacement
Entries become stale, if somebody updates the original data

• Useful due to temporal and spatial locality of references

• The hit ratio (#hits / #misses) determines the performance
14

1.2. Memory



Memory Hierarchy

15

1.2. Memory

Registers

On-chip L1 c.

Off-chip L2 cache

Main memory

Hard disk

Internet

Smaller, faster 
and costlier 
(per byte)

Larger, slower 
and cheaper 
(per byte)

CPU

Cache

Caches can 
be managed 
by hardware 
or software!

Growing disparity of speed 
between CPU and memory



Characteristics and Access
• ROM: Read-only memory, e.g. Compact Discs (CD-ROM); 

Used for firmware (low-level, hardware-specific software)

• RAM: Random-access memory, data can be accessed in any 
order (unlike disks); Often volatile storage (power supply!)

• Main memory connected to
the CPU via a memory bus

• The memory management
unit (MMU) calculates the
actual memory address

• Disks: Seek time + rotation
16

1.2. Memory



1.3. Program
• A sequence of instructions that perform a specified task

• In its simplest form, takes some input and generates output

• The main qualities of software (programs) are:

• Correctness: functional behavior according to specification

• Performance: fast execution, low memory consumption

• Maintainability: easy modification after initial development

• Reusability: simple adaptation to new purposes/products

• Usability: learnability, efficiency, memorability, satisfaction

• Security: confidentiality, integrity, availability (cryptography)
17

1. Hardware and Software



Bugs
• Software errors cost the US economy $60 billion annually, 

or about 0.6 percent of the gross domestic product (2002)

• US$1 billion Ariane 5 rocket destroyed after takeoff (1996)

• Several patients were killed
by the Therac-25 radiation
therapy machine (1980s)

• Terminology: debug, buggy

• «Testing shows the presence,
not the absence of bugs.»
Edsger Dijkstra

18

1.3. Program

«First actual case of bug being found.» (1947)

«Any feature is a bug un-
less it can be turned off.»



Programming Language
• An artificial language to give instructions to a computer

• Developing software in assembly language is error-prone

• Increase the programmer’s productivity by providing a tool:
A program that mediates between man and machine

• Natural language is inappropriate: complex and ambiguous

• Formal languages consist of two parts: syntax and semantics

• Defined by a specification or a reference implementation

• Trade-off between abstraction/safety and expressiveness

• Benefit: High-level languages reduce platform dependency
19

1.3. Program



Source Code
• Text written in a high-level programming language that

can be translated to binary machine code for execution

• Protected by copyright, protected form of free speech

• Example: “Hello world” in the C programming language

20

1.3. Program

#include <stdio.h>

int main() {
printf("Hello world!\n");
return 0;

}

main method with return type integer
(called by the run-time environment)

include standard I/O library

code block

print formatted string

exit code indicating successful execution

escape sequence for newline character

terminates
statement



Compiler and Interpreter
• A compiler translates source code into machine code

• It checks the syntax and rejects invalid programs

• Semantic checks performed either statically (at compile 
time, e.g. types) or dynamically (at run time, e.g. arrays)

• Optimization: Constant propagation, common subexpres-
sion elimination, register allocation, instruction scheduling

• Interpreter: Execute code directly, present during execution

• Just-in-time compilation (JIT): Sections compiled ‘on the fly’

• Reverse engineering: Decompilation (vs. code obfuscation)
21

1.3. Program



Text Terminal
• Command-line interface (CLI): Type commands to interact

• Graphical user interface (GUI): Manipulate visual elements

• Commands invoke programs with standard in- and output

• Interrupt their execution with ctrl-c (or ctrl-d on input)

• Structure: command arguments (syntax given by command)

• ‘>’ redirects output to a new file (‘>>’ appends to a file)

• ‘|’ chains output of left command & input of right command

• Prompt: Ready to accept commands, usually ends with ‘$’

• Mac: Open ‘Applications/Utilities/Terminal’ and type ‘help’
22

1.3. Program



Demo: Integer Factorization

23

1.3. Program

#include <stdio.h>                     // Comments:
int main() {
   int number;                         // Variable declaration
   printf("Number: ");                 // Print to standard output
   scanf("%d", &number);               // Read a number from input
   while (number > 0) {                // Loop while condition true
      printf("Factors: ");
      int factor = 2;                  // Assign value to variable
      while (factor * factor <= number) {
         if (number % factor == 0) {   // Check remainder (modulo)
            printf("%d, ", factor);
            number = number / factor;
         } else {
            factor = factor + 1;
         }
      }
      printf("%d\n", number);
      printf("Number: ");
      scanf("%d", &number);
   }
   return 0;
}

Store in a file ‘code.c’
Compile with ‘gcc code.c’
Run by typing ‘./a.out’

Note: If you want to 
learn a language, learn 
Java and not C/C++!



1.4. Operating System
• The OS manages the hardware:

• Abstraction: Simplify and standardize access to hardware
(with so-called Application Programming Interface (API))

• Duplication: Provide same resources to several programs

• Protection: Ensure fairness and prevent misbehavior

24

1. Hardware and Software

Application programsApplication programsApplication programs

Operating systemOperating systemOperating system

Processor Main Memory I/O devices

Software

Hardware



Process
• The OS creates for every running program a new process

• OS gives to each process the illusion of exclusive hardware:
Execution without interruption, own memory and own I/O

• Processes can run concurrently by an interleaved execution

• Control transfer between processes with context switches

• Interrupts trigger special code in OS (privileged execution)

• Process scheduling done with regular hardware interrupts

• Processes have an owner and corresponding permissions

• A process can again have multiple execution units: Threads
25

1.4. Operating System



Virtual Memory
• Each process has its own virtual address space:

• Code: Instructions copied from the executable

• Data: Global variables (statically allocated)

• Heap: Objects (dynamically allocated memory)

• Stack: Tracks function calls and local variables

• Virtual memory split into blocks called pages

• OS allocates memory on demand at any location

• Every memory access gets translated into physical address

• If main memory is full, OS swaps inactive pages to hard disk
26

1.4. Operating System

Stack

Heap

Data

Code



Partitioning
• Divide the hard disk drive into multiple logical storage units

• Booting is the process of loading the OS when starting up

• Multiple OSs can be installed on different partitions, loaded 
by the built-in basic input/output system (BIOS, “firmware”)

• File systems organize data to be retained after termination 
of a process: Store data permanently in units known as files

• Files consist of linked blocks, are structured by directories

• Specific FS layouts per partition, recover from corrupted FS

• Defragmentation reorganizes files into contiguous blocks

27

1.4. Operating System



1.5. Data Structures
• A data structure is a way of storing and organizing data

• Different data structures suited to different applications

• Goal is time and space efficient manipulation of stored data

• Support the design of efficient algorithms (belong together)

• Arrays are a collection of elements in a continuous block

• Address of each element can be computed from its index

• Size fixed at allocation, insertion or removal needs copying

• Constant access, but linear insertion

28

1. Hardware and Software

1 3 4 6 9
b b+i



Lists and Trees
• A linked list is a sequence of elements stored in nodes

• Each node references the next node in the sequence

• Constant insertion and removal, but linear access time

29

1.5. Data Structures

• A binary tree is a linked structure where
every node has at most two child nodes

• Restriction that left nodes are smaller and
right nodes are bigger allows binary search

1 3 4 6 9

3

1 6

4 9



Stacks and Queues
• A stack is a last in, first out (LIFO) collection

• Only two operations provided: Push and pop

• Implementation with an array or a linked list

• Used to track open tasks (e.g. the call stack)

30

1.5. Data Structures

Push Pop

• A queue is a first in, first out (FIFO) collection (as a buffer)

• Only two operations provided: Enqueue and dequeue

Enqueue Dequeue



Hash Tables
• A hash table maps identifying values to associated values

• A hash function is used to transform the key into an index 
that indicates the corresponding value’s position in an array

• A hash function maps values from a large to a small domain

• Collisions occur when different keys map to the same hash

• Widely used due to near-constant lookups (exc. collisions)

31

1.5. Data Structures

Eve

Alice

Bob

A Alice: alice@example.com

B Bob: bob@example.com

… …

E Eve: eve@example.com

… …



Buffer Overflow
• A buffer temporarily holds data that is moved from one 

place to another (implemented in hardware or software)

• Typically used for streaming (I/O) with variable rates

• Often implemented as a queue for simultaneous access

• Buffer overflows if incoming data exceeds storage capacity

• If not properly handled, adjacent memory gets overwritten

• Attacker overwrites return address or variable in call stack

• After decades of exploitation, still one of top vulnerabilities

• Solution: Use memory safe programming languages like Java
32

1.5. Data Structures



1.6. Algorithms
• An algorithm is a procedure for solving a specified problem 

in a finite number of steps (i.e. eventually producing output)

• Transitions between states do not have to be deterministic

• Brute-force: Naïve method of trying every possible solution

• Euclid’s algorithm for the greatest common divisor (GCD):

33

1. Hardware and Software

function gcd(a, b)
if a = 0
return b

while b ≠ 0
if a > b
a := a - b

else
b := b - a

return a

a b

15 9

6 9

6 3

3 3

3 0

15

9

6

6

3

3



Sorting
• Given a list of comparable objects, return them in order

• Bubble sort: Steps repeatedly through the list, compares 
adjacent items and swaps them if they are in wrong order
• Visualizing the sorting, small elements bubble to the top
• In-place algorithm: Only constant amount of extra storage

• Merge sort: Divides the list into halves, sorts them recur-
sively and merges the results (divide & conquer algorithm)
• Preserves the input order of equal elements (stable sort)

• Requires a linear amount of additional storage space

• See: cs.usfca.edu/~galles/visualization/ComparisonSort.html
34

1.6. Algorithms

http://cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://cs.usfca.edu/~galles/visualization/ComparisonSort.html


Time Complexity
• Estimating the processing time of algorithms, we are only 

interested in how they respond to changes in input size:
Efficiency measured by how well they scale with input size

• Big O notation characterizes functions according to their 
growth rate by suppressing multiplicative constants and 
lower order terms (upper bound): e.g. 5n3 + 3n is O(n3)

• Constant time (or space) complexity expressed as O(1)

• O(n) denotes a linear, O(2n) an exponential time algorithm

• Bubble sort is O(n2): n rounds of n comparisons and swaps

• Merge sort is O(n log n): log n rounds of linear merging
35

1.6. Algorithms



Complexity Theory
• Classifying problems according to their inherent difficulty;

Determine the practical limits of what computers can do

• A complexity class is a set of problems of related difficulty:
• P: Problems deterministically solvable in polynomial time
• NP: Non-deterministically solvable in polynomial time, i.e. 

a solution to the problem can be verified in polynomial t.

• Clearly, P ⊆ NP, NP containing many important problems;
Hardest problems in NP are NP-complete (reduction…)

• Example for NP-complete: The subset sum problem (∑ = 0)

• P ≟ NP problem: Efficient check implies efficient solution?
36

1.6. Algorithms



Computability Theory
• Asks what kind of problems can be solved algorithmically

• A decision problem is a question with a yes-or-no answer

• A decision problem solvable by an algorithm is decidable

• Halting Problem: Given a description of a program and a 
finite input, decide whether the program finishes running

• An algorithm is required to terminate (i.e. in finite time)

• Alan Turing proved in 1936 that no general algorithm to 
solve the halting problem for all possible pairs can exist

• Proof by reduction: New algo. would solve undec. problem

37

1.6. Algorithms



Concepts Learned Today
• Abstraction

• Algorithm

• Bootstrapping

• Bottleneck

• Caching

• Complexity

• Pipelining

• Specification

• Transparency
38

1. Hardware and Software



Clip of Today
Barack Obama - Computer Science Question (1:25)

http://www.youtube.com/watch?v=k4RRi_ntQc8

39

1. Hardware and Software My favorite comment:
Then again, there’s the Brute Force 
technique: Steal already sorted arrays 
from third world countries. O(1).

http://www.youtube.com/watch?v=k4RRi_ntQc8
http://www.youtube.com/watch?v=k4RRi_ntQc8


Questions?

40


